conda 使用记录

 

安装

https://blog.csdn.net/weixin_41335923/article/details/108368436

wget https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh
bash Anaconda3-2021.11-Linux-x86_64.sh -p anaconda/ -u
source ~/.bashrc

查看环境

conda info --e

创建环境

conda create -n env_name python=3.7

激活环境

conda activate env_name

停止环境

conda deactivate

删除环境

conda remove -n env_name --all

安装pytorch

https://zhuanlan.zhihu.com/p/106394476 版本对应:https://www.cnblogs.com/Wanggcong/p/12625540.html

conda install pytorch torchvision -c pytorch
# 限定版本
pip3 install torch==1.6.0 torchvision==0.7.0 -f https://download.pytorch.org/whl/torch_stable.html

测试gpu

https://zhuanlan.zhihu.com/p/268165089

import torch
from torch import nn
print(torch.cuda.is_available()) # true 查看GPU是否可用
print(torch.cuda.device_count()) #GPU数量, 1
torch.cuda.current_device() #当前GPU的索引, 0
torch.cuda.get_device_name(0) #输出GPU名称

安装tensorflow

conda install tensorflow
# 限定版本
conda install tensorflow-gpu=1.15
pip install tensorflow-gpu==1.15
## conda 安装可能会有gcc编译问题

测试gpu

https://blog.csdn.net/sunshine2124ch/article/details/103127551

import tensorflow as tf
tf.test.is_gpu_available()

查看cuda/cudnn版本:

nvcc --version
nvcc -V
cat /usr/local/cuda/version.txt
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2